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Abstract

Data scarcity and noise are important issues in industrial applications of machine
learning. However, it is often challenging to devise a scalable and generalized
approach to address the fundamental distributional and semantic properties of
dataset with black box models. For this reason, data-centric approaches are crucial
for the automation of machine learning operation pipeline. In order to serve as
the basis for this automation, we suggest a domain-agnostic pipeline for refining
the quality of data in image classification problems. This pipeline contains data
valuation, cleansing, and augmentation. With an appropriate combination of these
methods, we could achieve 84.711% test accuracy (ranked #6, Honorable Mention
in the Most Innovative) in the Data-Centric AI competition only with the provided
dataset.

1 Introduction

Data scarcity and noise are important issues in industrial applications of machine learning. These
issues have been discussed a lot in the past and there are various studies. To deal with scarcity of data,
methods such as auto-augmentation (Cubuk et al. [2019], Lim et al. [2019], Hataya et al. [2020]),
GAN-based augmentation (Antoniou et al. [2017]), few-shot learning (Finn et al. [2017], Chen et al.
[2019]) and various other methods are being developed.

Another direction of research aims to improve data quality by focusing on learning objective or
model architecture such as training with noisy data (Patrini et al. [2017], Lee et al. [2019]) and biased
data (Saito et al. [2020], Ovaisi et al. [2020], Rosenbaum and Rubin [1983]). Moreover, there are
practical methods that focus on data quality for data engineering, such as reinforcement learning
based (Yoon et al. [2020]) and influence function based data valuation (Chen et al. [2021], Koh and
Liang [2017]). Still, researches on data do not gain much attention compared to the evolution of the
model architectures and algorithms.

Data valuation, augmentation and representation learning (Chen et al. [2020], Chen and He [2021])
are known to train a robust model. We consider this from a different point of view and intend to
use these approaches to construct a pipeline that can improve the data quality for data-centric AI.
We propose this pipeline, and achieved 84.711% test accuracy (ranked #6 and won an Honorable
Mention) in Data-Centric AI competition only with the provided training data and an appropriate
combination of previously mentioned methods.
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Figure 1: Example of noisy data. (a), (b) are mislabeled.
(a) GT(Ground Truth): ii, LB(Label): i. (b) GT: x, LB: ii. (c), (d) are noisy pictures.

2 Competition description

The Data-Centric AI competition setting aims to improve dataset given a fixed model architecture,
which is the opposite of other competitions that aims to find a suitable model (algorithm) for a given
dataset. The fixed model is a modified ResNet-50 (He et al. [2016]) whose input is of size 32x32.
The dataset has train-validation splits, which totals to roughly 3,000 hand-written Roman numerals.
The train split is unbalanced, and some data are perturbed by noise and wrong labels as in Figure
1. Another split called “label book" consists of 52 samples that are representative of each class and
can be used in place of a small test set. The model weights are selected with the best validation
accuracy in 100 epochs. At the time of the competition, the actual test dataset was not made public.
In this setting, we have to somehow construct no more than 10,000 train-validation samples from the
original dataset. The goal of the competition is to improve test accuracy with the new dataset under
fixed model constraints.1 In other words, we need to construct a new dataset that can help the model
generalize better.

3 Methodology

Although we focus on the competition, we concentrated on domain-agnostic techniques and relied
only on the given data (i.e. we do not consider generative or collection technique) to be applied to
more general tasks.

First, we considered given dataset as training data and label book as "clean" validation data. After
examining the data, we identified the following challenges: (1) many training data points were
perturbed by noise in input and label (2) scarcity of training data (3) imbalance of training data (4)
scarcity of “clean” validation data, i.e. label book. We organized components to solve these problems.

We define a training data point zti := (xti, y
t
i) ∈ X × Y , where X is the input space and Y is the

label space. Denote the training set as Dt := {zti}i∈[|Dt|] and validation set with data point zvj as
Dv := {zvj }j∈[|Dv|]. We denote per-sample loss given model parameter θ as `(z; θ). The details of
our method are as follows.

3.1 Overall pipeline

The overall pipeline to solve the previous problems is as follows. First, we computed data value or
influence(Section 3.2) for deleting negatively affecting data on validation loss. Then, we applied
data augmentation(Section 3.4). However, this augmented dataset still had mislabeled and noisy data
because the initial cleansing did not fully remove the undesirable points. Hence, we trained the model
using contrastive learning and conduct secondary cleansing(Section 3.3) from there. For this part, we
set the image size to 64x64 in order not to lose too much information on the image.

In addition, we concentrate on some edge cases and apply more data augmentation for a more compact
distribution of data representation. Finally, we apply cleansing again. We alternated cleansing and
augmentation of this pipeline for a number of times to obtain a full training data. Our final pipeline is
in Figure 2. Moreover, we used the given model architecture from the competition to provide the
same inductive bias on the dataset.

3.2 Data cleansing via data valuation

We began by addressing training data points that were negatively impacting the model generalization
performance. Rather than manually cleaning the data, our methodology focused on utilizing influence

1More details in https://worksheets.codalab.org/worksheets/0x7a8721f11e61436e93ac8f76da83f0e6
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Figure 2: Our overall pipeline for get new dataset. First, we remove negative influence data after
which we apply Faster AutoAugment as in (a). Next, we conduct contrastive learning for cleansing.
The dashed line means several iterations. (b) is concentrated augmentation for edge case. Finally, do
one more cleansing operation. We repeat this process for get full training dataset.

function (IF) (Koh and Liang [2017]). The idea behind IF is to “upweight" a training point to measure
its influence at inference. We define an upweighted loss on the i-th training point and optimized
model parameter θ∗i as follows:

Lupt (zti ; θ) =
1

|Dt|

|Dt|∑
k=1

`(ztk; θ) + εi`(z
t
i ; θ), θ∗i := argmin

θ
Lupt (zti ; θ) (1)

where εi is small weight on i-th train data point. Based on Equation 1, we compute the training data
influence on the validation loss by IF:

IF(zti , z
v
j ) = −

1

|Dt|
d`(zvj ; θ

∗
i )

dεi

∣∣∣∣
εi=0

, (2)

which means the change in the validation loss of the j-th validation data point by upweighting the
i-th training point. In order to circumvent the time complexity of computing the inverse Hessian, we
employed HyDRA(Chen et al. [2021]) to approximate the influence via hyper-gradient. Since the
validation dataset (i.e. label book) was small, we filtered out data points in a conservative manner,
excluding only those with large negative influences.

For more details, we calculate the influence of each training data point for each validation data point
via Equation 2. Next, we calculate the minimum (min) and standard deviation (std) of all training
data influence for each validation point. And remove them if influence less than min + std. We found
that the model can be overfitted to the label book if we set the influence criterion too large.

3.3 Data cleansing via contrastive learning

As a second step, for deleting or relabeling obviously perturbed data in pixels and label, we employed
supervised contrastive learning with Siamese network2 trained on the dataset obtained so far. This
was trained to distinguish between data of the same class and data of another class. In order to
make paired examples for contrastive learning, we applied shear, inversion, shift, rotation, zoom and
Gaussian noise augmentation.

Using the learned representation, we could visualize the dataset by projecting their feature in 2-
D space via t-SNE (Van der Maaten and Hinton [2008]), and identified the data points that were
obviously mislabeled or noise. Thus, using the k-nearest neighbor distances and labels, we fixed the
label if it was obviously a labeling error (all neighbors having the same but a different label as in
Figure 3.(a)), or dropped the data point if it didn’t obviously belong to a cluster (the closest neighbor
being far from the data point or it is around a different class cluster as in Figure 3.(b)).

3.4 Data augmentation

We employed a augmentation technique, Faster AutoAugment (FAA, Hataya et al. [2020]) to address
training data scarcity. Since train data is not enough, we thought that the classifier would not learn
properly because the middle of the data distribution may not be filled. From this point of view, we
decided to use FAA which fills in the missing data points. In order to make the augmentation fit the
gray scale image setting of the competition, only shear, inversion, translation, rotation, and Gaussian
noise were used for the policy search space. In this process, we balanced the number of samples in
each class to solve the imbalance.

2We modified https://keras.io/examples/vision/siamese_contrastive/
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Figure 3: Example of visualization with learned representation. Each red star is a representative
sample of a different class from the cluster. (a) shows a mislabelled point that is placed within the
cluster where all its neighbors are of different labels. On the other hand, (b) shows a noisy data that
lying at the boundary of the different class cluster.

In addition, we conduct further edge case augmentations. For this, we retrain the model with
augmented and cleaned dataset. After that, we project the learned penultimate features onto 2D space
with t-SNE from which we identified data points that obviously belong to a cluster but far from the
closest same-class neighbor as edge-case data point. On such data points, we applied further data
augmentation using inversion, shift, zoom and rotation.

4 Results

Method Accuracy

Full Pipeline (ours) 0.84711
HyDRA, FAA, Inversion 0.82603

HyDRA, FAA 0.80950
HyDRA, Random Augmentation 0.75165

HyDRA 0.67562

Baseline 0.64463

Table 1: Score for our pipeline component transformations

Table 1 presents performance for our pipeline component transformations. We conducted the
competition with subtle changes based on the our pipeline and report the accuracy on the leaderboard3.
Each of them is a combination of our components. Cleansing was included in all combinations except
for the Baseline (no modification of the data). Random Augmentation means randomly augmented
instead of FAA, and inversion means pixel inversion augmentation to stabilize the representation
instead of augmenting edge cases.

As a result, we were able to reconstruct data that had a good impact on performance with small and
noisy dataset. At the time of submission, because the actual test set was not disclosed and limit of
submission in the competition, the performance of each component was not systematically conducted
and not optimized. Hence, there is a room for performance improvement. Finally, we got 84.711%
accuracy, taking the 6th place(except duplicated ranks, about 1.1% difference from 1st place). Our
approach received the Honorable Mention in the Innovative category by our pipeline.

5 Conclusion

Even though our approaches were not fully developed and were mostly manual at the time of
submission, we confirmed the feasibility of such pipeline with the Data-Centric AI competition. For
future work, we are going to improve this method with a more algorithmic approach for real-world
applications on a more optimized automated pipeline toward data-centric AI.

3Leaderboard can be found at https://https-deeplearning-ai.github.io/data-centric-comp/
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